Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comb Chem High Throughput Screen ; 25(13): 2264-2277, 2022.
Article in English | MEDLINE | ID: covidwho-1714863

ABSTRACT

BACKGROUND: A xiaoqinglong decoction (XQLD) has been proven effective in treating severe coronavirus disease 2019 (COVID-19) cases; however, the mechanism remains unclear. OBJECTIVE: In the current study, we used network pharmacology and molecular docking technology to identify the effective components, potential targets, and biological pathways of XQLD against COVID-19. METHODS: Public databases were searched to determine the putative targets of the active compounds of XQLD and COVID-19-related targets. STRING and Cytoscape were used to establish the protein-protein interaction network and drug component, along with the target-pathway network. The DAVID database was used to enrich the biological functions and signaling pathways. AutoDock Vina was used for virtual docking. RESULTS: We identified 138 active compounds and 259 putative targets of XQLD. Biological network analysis showed that quercetin, beta-sitosterol, kaempferol, stigmasterol, and luteolin may be critical ingredients of XQLD, whereas VEGFA, IL-6, MAPK3, CASP3, STAT3, MAPK1, MAPK8, CASP8, CCL2, and FOS may be candidate drug targets. Enrichment analysis illustrated that XQLD could function by regulating viral defense, inflammatory response, immune response, and apoptosis. Molecular docking results showed a high affinity between the critical ingredients and host cell target proteins. CONCLUSION: This study uncovered the underlying pharmacological mechanism of XQLD against COVID-19. These findings lay a solid foundation for promoting the development of new drugs against severe acute respiratory syndrome coronavirus-2 infection and may contribute to the global fight against the COVID-19 pandemic.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Caspase 3 , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Interleukin-6 , Kaempferols , Luteolin , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Pandemics , Quercetin , Stigmasterol , Technology
SELECTION OF CITATIONS
SEARCH DETAIL